Evaluating the Performance of the dNFSP File System

Rodrigo Kassick*, Caciano Machado" ', Everton Hermann'*,
Rafael Avilab®*# Philippe Navaux', Yves Denneulin?

! Instituto de Informdtica/UFRGS
Caixa Postal 15064
91501-970 Porto Alegre — Brazil
Email: {avila,navaux}@inf.ufrgs.br

Abstract

Parallel 1/0 in cluster computing is one of the most
important issues to be tackled as clusters grow larger
and larger. Many solutions have been proposed for the
problem and, while effective in terms of performance,
they usually represent a considerable amount of hacking
into a “traditional” Beowulf cluster installation. In this
paper, we investigate a parallel solution based on NFS,
which reduces the level of intrusion in the file server
installation, keeps the client side untouched, and still
provides an improved level of performance and scala-
bility for parallel applications. We compare our pro-
posal to other existing file systems using known bench-
marks, and demonstrate that it is a valid alternative
for general-purpose cluster computing.

1. Introduction

High performance file systems are nowadays a spe-
cial source of attention for researchers in cluster com-
puting, since technology and prices allow one to build
machines that are each time larger and larger in size
and capacity. In the November 2004 TOP500 list?,
294 parallel machines are classified as clusters, and
many of them feature more than 1000 processors.
This trend has led researchers and vendors around
the world to adapt existing (mostly commercial) high-
performance 1/0O solutions as well as to design and im-
plement new parallel file systems, which might be bet-

PIBIC/CNPq research assistant
Dell/UFRGS research assistant
Work supported by HP Brazil
http://www.top500.org

[e el I

2 Laboratoire ID /IMAG
51, avenue Jean Kuntzmann
38330 Montbonnot-Saint Martin — France
Email: First. Last@Qimag.fr

ter suited to the “commodity-of-the-shelf” approach of
Beowulf cluster computing [14].

In any case, solutions for the performance and scal-
ability of cluster file systems generally present a signif-
icant amount of intrusion in a standard cluster instal-
lation, meaning that new tools, daemons and/or ker-
nel drivers must be compiled, installed and configured.
Traditional Beowulf software like the GNU/Linux sys-
tem, TCP/IP, NFS and the like are well-known to sys-
tem administrators and management tools, represent-
ing a good share of confidence and stability in a typical
cluster installation. In this way, we believe that a solu-
tion for parallel I/O that could be built up from such
established systems might be of considerable interest
to cluster computing facilities.

Following this approach, in this paper we present a
performance evaluation of dNFSP [1], an extension of
the standard NFS file server intended for an improved
level of performance and scalability on clusters while
still maintaining compatibility with the standard NFS
clients available on every Unix system. Our main goal
is to evaluate the feasability of ANFSP as an alterna-
tive for cluster file systems.

We begin with a brief introduction to ANFSP and its
principles, as well as its relation to other solutions for
parallel I/O. Section 3 then describes the benchmarks
and criteria used to evaluate ANFSP, followed by Sec-
tion 4 that presents and discusses the obtained results.
Finally we present in Section 5 our conclusions and fu-
ture activities.

2. dNFSP — Distributing NFS

NFSP [8] is a project started at the Laboratoire In-
formatique et Distribution, in Grenoble, France, with
the goal of providing an improved level of performance
to a standard NFS [3] server. By following this ap-

Figure 1. NFSP architecture

proach, the project expects to reach a level of perfor-
mance and scalability suitable for many parallel appli-
cations, and at the same time keep the intrusion level
in relation to a traditional cluster installation to a min-
imum.

2.1. Design of NFSP

The principle behind NFSP is inspired in PVFS [4].
The functionality of the NFS server is split into two
parts: a set of I/O nodes, or iods for short, which are
responsible for storing and retrieving the data blocks
that result from file striping, and a meta-server, which
plays the main role in NFSP: it appears as the “nor-
mal” NFS server for the clients but, upon receiving a
request, instead of reading/writing the data on its lo-
cal file system, it forwards the request to the appropri-
ate iods, which then respond to the clients as needed.
Once several requests are received by the meta-server,
they are forwarded to the iods, which can work in par-
allel, thus improving performance. Figure 1 illustrates
one possible scenario. Iods can be run on client ma-
chines without any restriction. This allows one to eas-
ily benefit from the (usually forgotten) disk space on
the compute nodes.

Several variations of NFSP have been implemented
so far [9, 10], being based on both the user- and (Linux)
kernel-level implementations of the standard NFS v2.
One common characteristic among them is that the
meta-server is one single process run on one of the
nodes. This design allows for increased performance in
the case of read operations, because most of the data in-
volved in the complete operation are sent directly from
the iods to the clients; however, in the case of writes,
the data must be sent from the clients to the meta-
server, and thus the original bottleneck remains the
same.

global metaserver

/ view

Figure 2. Meta-servers are replicated in dNFSP

2.2. dANFSP

In order to alleviate this problem, dNEFSP [1] has
been proposed as a variation of NFSP in which the
meta-server is replicated onto several compute nodes.
Figure 2 illustrates the new design.

In this approach, each replica of the meta-server
works exactly as in the original model, receiving re-
quests from the clients and forwarding them to the iods.
However, one single replica serves only a subset of the
clients, which see it as the only NFS server in the sys-
tem (i.e. the client side is still unchanged). For exam-
ple, if there are 4 meta-server replicas and 20 clients,
each replica can be bound to 5 clients in order to bal-
ance the system. Now if all the clients need to access
the server at the same time, several meta-server en-
try points (4, in the example) will be used instead of
just one, thus allowing for an increased overall band-
width also for write operations. Each replica is still ca-
pable of accessing the whole set of iods.

As a side-effect of meta-server replication, however,
a new problem arises: to keep meta-data consistency
among the several replicas. For example, if a client cre-
ates a new file, this file will exist on the meta-server
that client is bound to, but not on the others, since
meta-data are stored on each meta-server’s local file
system. This means that the new file will be visible for
every client bound to the same meta-server, but not for
the others.

In order to maintain meta-data coherence among
the meta-server replicas without incurring in too much
overhead, a mechanism based on LRC (Lazy Release
Consistency [7]) is used. In this mechanism, meta-data
are made consistent (which means to copy some in-
formation from one remote meta-server to another)
only when effectively needed by the clients. This sit-
uation is basically detected when a client tries to ac-
cess a file that apparently does not exist (lookup func-
tion in NFS). At this moment the meta-server in ques-

tion starts searching for the replica that contains the
file, and copies it when found. We rely on the fact that
accesses to really inexistent files should not occur (at
least not often) in a parallel application. More details
on the model are presented on another paper [1].

3. Related Work

The problem of efficient I/O in parallel computing
arises every time the number of compute nodes grows
beyond a few nodes (naturally, given that the appli-
cation needs it). In this way many solutions for high
performance storage in clusters and parallel machines
in general have been proposed. Two main approaches
seem to exist. The first one achieves improved perfor-
mance by making use of dedicated hardware like high
speed data links (e.g. fiber optics), redundant storage,
non-volatile RAM, and several combinations thereof.
This approach is mostly used by the file systems of
commercial parallel machines, such as IBM GPFS [12]
and Sistina GFS [13, 11]. Following another direction,
file systems such as PVFS [4] and Lustre [5] try to ob-
tain better performance by distributing the file system
functionalities among the compute nodes. Since this ap-
proach generally does not require the use of any spe-
cial kind of hardware, it is better suited to the philos-
ophy behind cluster computing.

dNFSP belongs in the second group. The main dif-
ference in relation to other distributed file systems is
the replicated meta-server design and its LRC-based
coherence mechanism, which allows for reduced over-
head operation in applications with low meta-data pro-
file. Another aspect that distinguishes NFSP in general
is the NFS compatibility. By building the system upon
the traditional NFS foundation, we aim at obtaining
a system with well-known configuration and manage-
ment procedures, thus reducing the impact of introduc-
ing a new technology, while being able to keep with a
good level of both performance and scalability which
are suitable for many parallel applications.

In order to better evaluate the performance levels
of ANFSP, we have carried out a series of experiments
with traditional file system benchmarks found in the
literature. Such experiments and test-bed are described
next.

4. Description of the Experiments

The goal of our analysis is to evaluate the level of
performance presented by dNFSP in comparison to a
real cluster file system, as well as to measure the im-
pact of our extensions to the traditional NFS server
in comparison to an unmodified version of that sys-

tem. It is important to clarify that we do not consider
NFS a proper high-performance cluster file system, but
rather recognise that it is widely used for that purpose
on environments where parallel I/O applications are
not dominant. In this way, we try to evaluate dANFSP
in both situations, by using benchmarks and applica-
tions for both general-purpose and high-performance
file systems.

Benchmark

4.1. Distributed Andrew

(DAB)

In order to evaluate the performance of the proposed
filesystem, as well as the overhead caused by split-
ting the files through IODs and replicating metafiles in
metaservers, we have created a variation of the well-
known Andrew Benchmark, here called Distributed
Andrew Benchmark.

The original Andrew Benchmark was conceived
to test the performance of the Andrew File Sys-
tem (AFS) [6], also a distributed file system. It tries
to simulate the load that would be achieved in nor-
mal use of the file system with several users connected.
The original benchmark is meant to be run on a sin-
gle machine. In our modified version, we intend
to evaluate the performance of several nodes ac-
cessing the distributed file server. This is done by
executing several instances of the benchmark on dif-
ferent machines (here called clients).

In order to measure the times of meta-server syn-
chronization and data I/O independently, the bench-
mark was modified to make all clients execute phases
in a coordinated manner, i.e., all clients must complete
a phase before proceeding to the next one. Also, as a
guarantee that no results are masked by data caching
or buffering, the remote file system is mounted and un-
mounted respectively at the beggining and at the end
of each phase.

The modified benchmark is composed of five phases:

mkdir Creates the directories which will be used in
the next phases.

cp Each client makes a copy of the original tree in its
own directory in the shared file system.

stat The benchmark performs a stat in each file in the
client’s directory.

read Reads all the contents of all files in the client’s
directory.

make Compiles an average size program (in the case
of this test, POV-Ray?).

2 http://www.povray.org

Phases 1 & 3 focus on how efficient and scalable the
file system is when accessing the metafiles. Phases 2 & 4
try to evaluate the performance of data access. Phase 5
tries to measure the file system performance in a situ-
ation where both metafiles and data are needed.

4.2. The NAS/BTIO Benchmark

The NAS Parallel Benchmarks (NPB) are a set of
applications based on Computational Fluid Dynamics
(CFD) designed to help evaluate the performance of
parallel supercomputers. There are several flavours of
the NPB, allowing to evaluate different aspects. The
BTIO benchmark tool is the responsible to evaluate
the storage performance. It is an extension of the BT
benchmark [2] which is based on a CFD code that
uses an implicit algorithm to solve the 3D compress-
ible Navier-Stokes equations. The BTIO version of the
benchmark uses the same computational method, but
with the addition that results must be written to disk
at every fifth time step. There are different versions of
BTIO, which are described below:

e BTIO-full-mpiio: uses MPI-10 file operations with
collective buffering, which means that data blocks
are potentially re-ordered previously to being writ-
ten to disk, resulting in coarser write granularity

e BTIO-simple-mpiio: Also uses MPI-IO operations,
but no data re-ordering is performed, resulting in
a high number of seeks when storing information
on the file system

e BTIO-fortran-direct: This version is similar to
simple-mpiio, but uses the Fortran direct access
method instead of MPI-IO

e BT-epio: In this version each node writes in a sep-
arate file. This test gives the optimal write perfor-
mance that can be obtained, because the file isn’t
shared by all the processes, so there is no lock re-
strictions. In order to compare with other versions,
the time to merge the files must be computed, as
required by the Application I/O benchmark spec-
ification.

There is one restriction to run the test: the number
of processes must be a perfect square (1,4,9,16,...).
To determine the amount of memory required for the
run, a class of problem size must be chosen which rep-
resents the cubic matrix dimensions : Class A (643),
Class B (1023), Class C (1623). The original code runs
for 200 iterations and writes at every five iterations.

The tests were performed using only the epio version
of the benchmark, since ANFSP was designed based on
NFSv2 protocol, and MPI-2 10 requires NFSv3 to con-
trol the file access using locks. Also we have developed

another version of BTIO to perform writes on every it-
eration instead of every five iterations, resulting in a
more intensive write test.

5. Experimental Results

The experiments have been carried out on the
LabTeC3 cluster. This machine is composed of 20 nodes
interconnected by Fast Ethernet, where each node fea-
tures two Pentium III processors at 1 GHz, 1 GB RAM
and one 18 GB SCSI hard disk. The operating sys-
tem on all nodes is Debian GNU/Linux with ker-
nel 2.4.26. All systems and applications have been
compiled (where appropriate) with GCC v2.95.

5.1. The Analyzed File Systems

In order to compare the performance of ANFSP we
have selected two representative file systems according
to our evaluation criteria mentioned before:

UNFS The user level version of the widely used Net-
work File System. We considered the values ob-
tained with NFS [?] as a base of comparision to
the parallel file system measures in the situation
where cluster applications are not demanding high
performance I/O. The results have been obtained
with UNFS v2.2betad?7.

PVFS The well-known parallel file system for the Be-
owulf world. The main aspect that differs PVFS
from dNFSP is the fact that PVFS1 does not im-
plement multiple meta-servers*. PVFS is devel-
oped jointly by the Parallel Architecture Research
Laboratory (PARL) at Clemson University and
The Mathematics and Computer Science Division
at Argonne National Laboratory. The version used
is PVFS 1.6.2.

In the PVFS and dNFSP experiments, a set of
4 nodes has been dedicated to the file server, each one
holding one iod. The PVFS manager runs together with
the first iod. For dNFSP, the 4 corresponding meta-
servers also share the same nodes with the iods, and
clients are evenly distributed among them. For each
measured value, the mean of a series of five executions
is presented.

3 Deployed within the context of a partnership between Dell
Computers and the Instituto de Informaética since 2002
(http://www.inf.ufrgs.br /LabTeC)

4 This feature is present in PVFS version 2, whose first stable
version was only recently released, and as such we did not
have experimental data at the time the paper was prepared

Server

Clients

Figure 3. UNFS Communication Model

O O Servers
|]

i i
v v

e

Figure 4. PVFS Communication Model

5.2. DAB Results

Figures 4 to 4.2 show the communication model for
the three studied distributed file systems. The dashed
lines show communication relative to file descriptor
(metafiles in PVFS and dNFSP). The continuous lines
show communication relative to data transfers. The tri-
angles represent metaservers and the circles iods.

Figures 7?7 and 7?7 show the execution times for DAB
using 8 and 16 clients respectively. The measured val-
ues for each system are grouped by phase for better
comparison.

In phases 1 and 2, we can notice that the parallel file
systems present high overhead when they execute oper-
ations like directories and file creation. In dANFSP, This
overhead is mainly originated by the metafile replica-
tion mechanism, while PVFS has shown a poor perfor-
mance in operation regarding metafiles.

The POVRay source code, used in phase 5 of DAB,
has 1796 files and 74 directories. In the case of ANFSP,
considering the test configuration with 16 clients, in

AGA®|AGIA®EL

T T T T

1NIBINI

‘TR E

Figure 5. dNFSP Communication Model

Time (s)

500
450
400
350
300
250
200
150
100

50

252.4249.08
2243
T89. 7
151,16
122,37
99,62 103,36
18 60.3¢
SR
233
13,57 17.44
oeemrl 1 N
T T T T
Phase 1 Phase 2 Phase 3 Phase 4 Fase 5

UNFS
T1PVFS
[]dNFSp

Figure 6. Modified Andrew Benchmark Test
(8 clients)

Time (s)

500
450
400
350
300
250
200
150
100

50

78586

44521

o

16y

103,86

46,81

18,89

EEE

32,92

N

Phase 1

Phase 2

Phase 3

Phase 4

Fase 5

UNFS
T PVFS
] dNFSp

Figure 7. Modified Andrew Benchmark Test
(16 clients)

the extreme situation when we are copying the source
(phase 2), we realize a total of 89760 lookup operations
in the metaservers to find the metafiles (that don’t
exist anywhere yet). This is because each metaserver
searches for the metafile of each copied file on all
other metaservers. The mechanism used to replicate
the metafiles in the present version of ANFSP is rela-
tively heavy and is one of the main aspects where we
are working on. The values obtained in phase 5 reflect
this behaviour.

According to Satyanarayanan [?], the reading oper-
ations are much more common than the writing oper-
ations, so the results of phases 3 and 4 represent con-
siderable advantage to ANFSP. This advantage of mul-
tiple metaservers can be noticed clearly in phase 4. In
this phase, the single NFS server is a serious bottle-
neck, which becomes more evident for a higher number
of clients. PVFS, on the other hand, due to a prob-
lem with the handling of small files, presents poor per-
formance.

In phase 5 we must consider that the compilation
process consists actually in the alternation of the read-
ing, compilation and writing. This means that the bot-
tleneck of communication in the NFS server is not a
major problem in this phase, because this alternation
may result in a ad hoc synchronization over the NFS
calls of the clients. Considering the current version of
the parallel file systems and their inherent overhead to
manage metafiles the parallel.

5.3. BTIO Results

This section presents results obtained using the
BTIO benchmark to compare our file system with other
related ones. BTIO, as described in section 3.2, is a
variation of Computational Fluid Dynamics applica-
tion where the intermediary results are written to disk
during computation. Therefore, it requires a reactive
and fast file system to achieve good performance.

As BTIO requires a perfect square number of pro-
cess, the tests were executed using 1, 4, 9 and 16 clients.
Figure 7 shows the average of the execution time ob-
tained running the modified version of BTIO.

We can see that ANFSP was more effective in almost
all the situations. It was between 0.4% slower and 33%
faster than UNFS. Compared to PVF'S the results were
closer: our file system was between 1% and 6% faster
than PVFS.

One reason for having a better performance com-
pared to UNFS is the fact that ANFSP can be started
using as many meta-servers and iods as needed, allow-
ing to perform independent parallel writes. Another
reason for better performance using dNFSP is the fact

2000
1800 ——25zan 1780
INS)
1600 §§§
K
1400 o
@ 1200 HH
o 1000 BN EAPVFs
£ NS 5 dNFsP
= 800 = CINFs
A7 [
Ay s
400 ?X 53 T 360 = 330
EE ;g v §§ 256 250 [|
200 I |w#isux)|
R A AT
8 3 S
0 T T T
1 Client 4 Clients 9 Clients 16 Clients

Number of clients

Figure 8. Comparison between UNFS, PVFS
and dNFSP using BT10-epio benchmark

that BTIO performs small write requests and PVFES
has poor performance when used with small write block
size, as stated by the authors on the PVFS website.

6. Conclusions and Future Work

Our experiments with ANFSP lead to the conclusion
that the system is suitable for parallel applications on
clusters, in the sense that an effective gain in read and
write operations, comparable to those of a true parallel
file system, can be observed. In our BTIO comparison,
the levels of performance achieved with ANFSP are sim-
ilar to those of PVFS, actually with a gain of up to 6%
in execution time. Both systems perform clearly bet-
ter than NFS with this benchmark, reaching 30% of
advantage in some cases.

In the case of DAB, the performance of the three sys-
tems vary depending on each phase, with NFS some-
times showing better performance. This is due to the
fact that DAB, being based on the Andrew Benchmark,
mimics the load of a general-purpose file system, and
not that of a parallel computing environment, espe-
cially by the frequent creation of new files and the han-
dling of files of only a few kbytes. In ANFSP, the gener-
ation of lookup messages upon file creation is the main
responsible for the decrease in performance, while for
PVES the problem lies on the handling of small data
chunks.

Currently, in dNFSP, we are investigating a solu-
tion for the file lookup problem. We do not expect the
file creation case to be very frequent, but the copying
of remote meta-data is realistic, and may cause signif-

icant overhead if there are many files involved. A pos-
sible solution will be to copy several files (e.g. all the
files on the same directory) on each update instead of
just one, in order to try to anticipate future requests.

As a future work, we consider the possibility of in-
troducing a level of fault tolerance on the iods, so that
file striping may be performed redundantly (e.g. as in
RAID). Another possibility is to port the implementa-
tion into the kernel-level NFS, since this version pro-
vides less overhead due to fewer memory copies, which
also improves performance.

References

1] R. B. Avila, P. O. A. Navaux, P. Lombard, A. Lebre,
and Y. Denneulin. Performance evaluation of a proto-
type distributed NFS server. In J.-L. Gaudiot, M. L.
Pilla, P. O. A. Navaux, and S. W. Song, editors, Proc.
of the 16th Symposium on Computer Architecture and
High Performance Computing, pages 100-105, Foz do
Iguagu, Oct. 2004. Washington, IEEE.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The nas
parallel benchmarks. The International Journal of Su-
percomputer Applications, 5(3):63—73, Fall 1991.

[3] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
Version 8 Protocol Specification: RFC 1831. Inter-
net Engineering Task Force, Network Working Group,
June 1995.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: a parallel file system for Linux clus-
ters. In Proc. of the 4th Annual Linuxz Showcase and
Conference, pages 317-327, Atlanta, GA, 2000. Best
Paper Award.

[5] Cluster File Systems, Inc. Lustre: A scal-
able, high-performance file system, 2002. Avail-
able at http://www.lustre.org/docs/whitepaper.pdf
(July 2004).

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed
file system. ACM Trans. Comput. Syst., 6(1):51-81,
1988.

[7] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy re-
lease consistency for software distributed shared mem-
ory. In D. Abramson and J.-L. Gaudiot, editors, Proc.
of the 19th Annual International Symposium on Com-
puter Architecture, pages 13—21, Gold Coast, Queens-
land, Australia, 1992. New York, ACM Press.

[8] P. Lombard. NFSP : Une Solution de Stockage Dis-
tribué pour Architectures Grande Echelle. These, In-

stitut National Polytechnique de Grenoble, Grenoble,
2003.

[9] P. Lombard and Y. Denneulin. nfsp: a distributed NFS
server for clusters of workstations. In Proc. of the
16th International Parallel € Distributed Processing
Symposium, IPDPS, page 35, Ft. Lauderdale, Florida,
USA, Apr. 2002. Los Alamitos, IEEE Computer Soci-
ety. Abstract only, full paper available in CD-ROM.

[10] P. Lombard, Y. Denneulin, O. Valentin, and A. Le-
bre. Improving the performances of a distributed NFS
implementation. In R. Wyrzykowski, J. Dongarra,
M. Paprzycki, and J. Wasniewski, editors, Proc. of
the 5th International Conference on Parallel Process-
ing and Applied Mathematics, volume 3019 of Lecture
Notes in Computer Science, pages 405-412, Czesto-
chowa, Poland, 2003. Berlin, Springer.

[11] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Er-
ickson, E. Nygaard, C. J. Sabol, S. R. Soltis, D. C.
Teigland, and M. T. O’Keefe. A 64-bit, shared disk
file system for Linux. In Proc. of the 16th IEEE
Symposium on Mass Storage Systems, pages 22—41,
San Diego, California, Mar. 1999. Los Alamitos, IEEE
Computer Society.

[12] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proc. of the
Conference on File and Storage Technologies, pages
231-244, Monterey, CA, 2002.

[13] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and
T. Ruwart. The design and performance of a shared
disk file system for IRIX. In Proc. of the 6th God-
dard Conference on Mass Storage Systems and Tech-
nologies, pages 41-56, College Park, Maryland, Mar.
1998.

[14] T. L. Sterling, J. Salmon, D. J. Becker, and D. F.
Savarese. How to Build a Beowulf: a Guide to the Im-
plementation and Application of PC Clusters. MIT,
Cambridge, 1999.

